The Roles of Parents and Teachers in Latinx Middle Schoolers' Math and Science Identities

Jessie A. Erikson,¹ Alyssa N. Garcia,¹ Estela Cicchinelli,² Isabella A. Timmons,² Patrick T. Quintero,¹ Mary A. Brokenshire,¹ Melissa Y. Delgado,¹ Rajni L. Nair² ¹University of Arizona, ²Arizona State University

ABSTRACT

Math and science identity are important predictors of persistence in STEM, where Latinx underrepresentation remains an issue. However, we know little about promoting these identities in early adolescence, when youth begin to explore possible career paths. Drawing upon Situated Expectancy-Value Theory and empirical findings from collegeaged samples, this study examined the effects of parent modeling of academic behaviors, child-teacher attachment, and gender on Latinx middle schoolers' math and science identities. Survey data were collected from 194 Latinx middle schoolers and analyzed using regression. Results indicated that paternal modeling and teacher attachment predicted both math and science identity; maternal modeling predicted only science identity. Girls reported lower science identity. Follow-up analyses suggest that academic self-efficacy mediates the effects of child-teacher attachment. Our findings suggest that adult role models, particularly teachers, play a key role in promoting math/science identity in Latinx youth.

RESULTS

Descriptive Statistics

Table 1. Descriptive Statistics (Males Above/Females Below Diagonal)								
Variable	1	2	3	4	5	6		
1. Age (years)	-	09	15	12	24*	22 *		
2. Maternal modeling	02	-	.29**	.24*	.03	.28**		
3. Paternal modeling	19	.25 *	-	.28**	.13	.21*		
4. Teacher attachment	04	.47**	.14	-	.29**	.27*		
5. Math identity	07	02	.21 *	.18	-	.41**		
6. Science identity	16	.20 *	.21 *	.45**	.57**	-		

Male						
Ν	87	86	86	86	87	87
Mean	12.36	4.15	3.55	3.04	3.38	3.35
(<i>SD</i>)	(1.12)	(1.08)	(1.51)	(1.01)	(.70)	(.68)
Female						
Ν	104	103	103	103	104	105
Mean	12.40	4.33	3.64	3.28	3.38	3.19
(<i>SD</i>)	(1.19)	(.79)	(1.37)	(1.05)	(.83)	(.69)

RESULTS (continued)

Follow-Up Analyses: Indirect Effects

Effects of Child-Teacher Attachment and Academic Self-Efficacy on Math and Science Identity

Figure 1. Simple mediation models illustrating effect of child-teacher attachment on math and science identity via academic self-efficacy

BACKGROUND

- Promoting Latinx adolescents' math and science identity may help address Latinx underrepresentation¹ in STEM.
- Latinx college students with higher math and science identities are more likely to persist in STEM majors and careers.²
- Promoting math and science identity in early adolescence
 - Early adolescence is an important period of identity development³ and career exploration⁴
 - In middle school, higher science identities are associated with greater participation in STEM activities⁵ (e.g., extra-credit projects, reading science books for fun)
- How can we promote math/science identities in middle school?
 - Latinx undergraduates with faculty role models report higher math and science identities²; for middle schoolers, teachers and parents may play a similar role
 - In line with Situated Expectancy-Value Theory (SEVT),⁶ the beliefs and behaviors of parents and teachers (i.e., socializers)

Overall							
Ν	193	191	191	191	193	194	
Mean	12.38	4.24	3.59	3.17	3.39	3.27	
(<i>SD</i>)	(1.15)	(.93)	(1.43)	(1.04)	(.77)	(.69)	
Note. *p < .05. **p < .01. ***p < .001							

Regression Analyses

Table 2. Regression Analyses for Predictors of Math and Science Identity									
Variable	Math identity				Science identity				
	В	(<i>SE</i>)	sr ²	<i>R</i> ²	В	(<i>SE</i>)	sr ²	R ²	
(Intercept)	3.39***	(.08)			3.37***	(.07)			
Age (years)	10 *	(.05)	.02		10 *	(.04)	.03		
Female	.00	(.11)	.00		22*	(.10)	.02		
Maternal modeling	01	(.06)	.00	.02	.17**	(.05)	.05	.10	
(Intercept)	3.39***	(.08)			3.36***	(.07)			
Age (years)	08	(.05)	.01		09*	(.04)	.02		
Female	01	(.11)	.00		19 *	(.10)	.02		
Paternal modeling	.08*	(.04)	.02	.04	.09**	(.03)	.03	.08	

attachment	Direct Effect	identity	attachment	Direct Effect	Identity
child-teacher	0.22***	→ math	child-teacher	0.35***	→ science
attachment	Total Effect	identity	attachment	Total Effect	identity

Note. Values represent standardized betas. *p < .05. **p < .01. ***p < .001

Table 3. Indirect Effects	
Path	95% Cl ^a
Child-teacher attachment $ ightarrow$ Self-efficacy $ ightarrow$ Math ID	[.03, .15]
Child-teacher attachment \rightarrow Self-efficacy \rightarrow Science ID	[.03,.14]
Note. ^a Confidence intervals for estimates with bootstrap samples of	1000.

CONCLUSIONS & IMPLICATIONS

- Adult role models, particularly teachers, play an important role in promoting the math and science identities in Latinx middle schoolers.
- The relationship between parent modeling, child-teacher attachment, and identity differed for math and science.
 - This study included a limited measure of parent- and teacher-student relationships. Other related measures could be more predictive of math identity. For example, Shifrer et al. (2023) found that adolescents who perceived their teachers as equitable had higher math identities.
 - Future research should further explore differences in factors promoting math identity and science identity.

are likely to influence adolescents' math and science identities

RESEARCH QUESTIONS

- Do child-teacher attachment and parent modeling of academic behaviors predict math and science identity among Latinx middle schoolers?
- 2. Does gender moderate these relationships?

METHODS

- Data for the study come from a mixed methods study on school climate and well-being among Latinx adolescents
- 194 Latinx middle school students
- Southwestern United States
- Surveys completed in English reporting on
- Math identity (α = .96) and science identity (α = .95)⁷ Maternal modeling (α = .94) and paternal modeling (α =.96)⁸
- Teacher attachment (α = .93)⁹
- Academic self-efficacy ($\alpha = .82$)¹⁰
- Regression analyses
 - Follow-up analyses: PROCESS for SPSS¹¹

(Intercept)	3.41***	(.08)			3.39 ^{***}	(.07)		
Age (years)	09	(.05)	.02		09*	(.04)	.02	
Female	04	(.11)	.00		23*	(.09)	.03	
Teacher attachment	.17**	(.05)	.05	.07	.24***	(.04)	.12	.18
Note. *p < .05. **p < .01. ***p < .001.								

Summary of Primary Results

RQ 1: Do child-teacher attachment and parent modeling predict math and science identity among Latinx middle schoolers?

- Child-teacher attachment and paternal modeling predicted math identity, controlling for age
- Child-teacher attachment, paternal modeling, and maternal modeling predicted science identity, controlling for age
- For both math and science identity, child-teacher attachment accounted for the greatest amount of variance
- Effects of parent modeling and child-teacher attachment were larger for science identity than math identity

RQ 2: Does gender moderate these relationships?

- Gender did not moderate effects on math or science identity
- Girls endorsed lower levels of science identity
- Gender differences were not observed for math identity.

- Follow-up analyses indicated that teachers may be able to promote Latinx adolescents' math/science identities through positive interactions that support students' academic self-efficacy. However, all measures were collected at the same time point.
 - Future research should examine child-teacher attachment, academic selfefficacy, and math/science identity in a longitudinal design.

ACKNOWLEDGEMENTS

Thank you to all the participants (youth and parents), middle school and district personnel, and undergraduate and graduate students who contributed. This study was funded by the William T. Grant Foundation (188852, M. Delgado and R. Nair, PIs).

REFERENCES

- 1. Pew Research Center. (2021, April 1). STEM jobs see uneven progress in increasing gender, racial, and ethnic diversity. Pew Research Center.
- https://www.pewresearch.org/science/2021/04/01/stem-jobs-see-uneven-progress-in-increasing-gender-racial-and-ethnic-diversity/
- Estrada, M., Hernandez, P. R., & Schultz, P. W. (2018). A longitudinal study of how quality mentorship and research experience integrate underrepresented minorities into STEM careers. CBE-Life Sciences Education, 17(1). <u>https://doi.org/10.1187/cbe.17-04-0066</u>
- 3. Newman, P. R., & Newman, B. M. (1976). Early adolescence and its conflict: Group identity versus alienation. Adolescence, 11(42), 261.
- 4. Jiang, Z., Newman, A., Le, H., Presbitero, A., & Zheng, C. (2019). Career exploration: A review and future research agenda. *Journal of Vocational Behavior*, 110, 338–356. https://doi.org/10.1016/j.jvb.2018.08.008
- 5. Vincent-Ruz, P., & Schunn, C. D. (2018). The nature of science identity and its role as the driver of student choices. *International Journal of STEM Education*, 5(1), 48. https://doi.org/10.1186/s40594-018-0140-5
- Eccles, J. S., & Wigfield, A. (2020). From expectancy-value theory to situated expectancy-value theory: A developmental, social cognitive, and sociocultural perspective on motivation. *Contemporary Educational Psychology*, 61, 101859. <u>https://doi.org/10.1016/j.cedpsych.2020.101859</u>
- Walker, L. H., & Syed, M. (2013). Integrating identities: Ethnic and academic identities among diverse college students. *Teachers College Record*, 115(8), 1-24. <u>https://doi.org/10.1177/016146811311500803</u>
- 8. Delgado, M. Y., Wheeler, L. A., Perez-Brena, N., & Nair, R. L. (2021). The associations of maternal/paternal modeling, self-efficacy, and ethnic fit on math/science achievement among Latinx students. Journal of Adolescence, 92(1), 247–257. <u>https://doi.org/10.1016/j.adolescence.2021.08.013</u>
- 9. Armsden, G. C., & Greenberg, M. T. (1987). The inventory of parent and peer attachment: Individual differences and their relationship to psychological well-being in adolescence. *Journal of Youth and Adolescence*, 16(5), 427-454. <u>https://doi.org/10.1007/BF02202939</u>
- 10. Arunkumar, R., Midgley, C., & Urdan, T. (1999). Perceiving high or low home-school dissonance: Longitudinal effects on adolescent emotional and academic well-being. Journal of Research on Adolescence, 9(4), 441-466. <u>https://doi.org/10.1207/s15327795jra0904_4</u>
- Hayes, A. F. (2022). Introduction to mediation, moderation, and conditional process analysis: A regression-based approach (3rd edition). New York: The Guilford Press.
 Shifrer, D., Phillippo, K., Tilbrook, N., & Morton, K. (2023). The Relationship between Ninth Graders' Perceptions of Teacher Equity and Their Math Identity: Differences by Student Race and School Racial Composition. Sociology of Education, 96(2), 129–148. https://doi.org/10.1177/00380407221149016

Frances McClelland Institute for Children, Youth & Families

NORTON SCHOOL OF HUMAN ECOLOGY

THE NEXUS LAB

LEVERAGING CULTURE, FAMILY, AND SCHOOL FOR HEALTH AND WELL-BEING

Arizona State University

Contact Jessie Erikson at jaerikson@arizona.edu

The authors acknowledge funding from the Frances McClelland Institute for Children, Youth, and Families.

